Chapter 12.

Regulation of Cell Division
Coordination of cell division

- **Multicellular organism**
 - need to coordinate across different parts of organism
 - timing of cell division
 - rates of cell division
 - crucial for normal growth, development & maintenance
 - do all cells have same cell cycle?

Why is this such a hot topic right now?
Frequency of cell division

- Frequency of cell division varies with cell type
 - Skin cells: divide frequently throughout life
 - Liver cells: retain ability to divide, but keep it in reserve
 - Mature nerve cells & muscle cells: do not divide at all after maturity
Cell Cycle Control

- Two irreversible points in cell cycle
 - replication of genetic material
 - separation of sister chromatids
- Cell can be put on hold at specific checkpoints

![Diagram showing centromere, single-stranded chromosomes, double-stranded chromosomes, and sister chromatids.]

There’s no turning back, now!
Checkpoint control system

- **Checkpoints**
 - cell cycle controlled by **STOP & GO** chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly
Checkpoint control system

- 3 major checkpoints:
 - G_1
 - can DNA synthesis begin?
 - G_2
 - has DNA synthesis been completed correctly?
 - commitment to mitosis
 - M phases
 - spindle checkpoint
 - can sister chromatids separate correctly?

G1 / S checkpoint (Start or Restriction Point)

G2 / M checkpoint
Spindle checkpoint

S
M
C
G1
G2

2005-2006
G₁ checkpoint

- G₁ checkpoint is most critical
 - primary decision point
 - “restriction point”
 - if cell receives **“go” signal**, it divides
 - if does **not** receive “go” signal, cell exits cycle & switches to G₀ phase
 - non-dividing state
G₀ phase

- G₀ phase
 - non-dividing, differentiated state
 - most human cells in G₀ phase

- liver cells
 - in G₀, but can be “called back” to cell cycle by external cues

- nerve & muscle cells
 - highly specialized; arrested in G₀ & can never divide
Activation of cell division

- How do cells know when to divide?
 - cell communication = signals
 - chemical signals in cytoplasm give cue
 - signals usually mean proteins
 - activators
 - inhibitors

Experimental evidence: Can you explain this?
“Go-ahead” signals

- Signals that promote cell growth & division
 - proteins
 - internal signals
 - “promoting factors”
 - external signals
 - “growth factors”

- Primary mechanism of control
 - phosphorylation
 - kinase enzymes
Protein signals

- Promoting factors
 - Cyclins
 - regulatory proteins
 - levels cycle in the cell
 - Cdks
 - cyclin-dependent kinases
 - enzyme activates cellular proteins
 - MPF
 - maturation (mitosis) promoting factor
 - APC
 - anaphase promoting complex
Cyclins & Cdks

- Interaction of Cdks & different Cyclins triggers the stages of the cell cycle.

Leland H. Hartwell
checkpoints

Tim Hunt
Cdks

Sir Paul Nurse
cyclins

1970s-'80s | 2001
Chromosomes attached at metaphase plate

- Replication completed
- DNA integrity

- Growth factors
- Nutritional state of cell
- Size of cell

G_{2} / M checkpoint

Spindle checkpoint

G_{1} / S checkpoint

- Cdk / G_{2} cyclin (MPF)
- APC Active
- G_{2}/M checkpoint

- Cdk / G_{1} cyclin
- APC Inactive
- G_{1}/S checkpoint

- Mitosis
Cyclin & Cyclin dependent kinases

- CDKs & cyclin drive cell from one phase to next in cell cycle
 - proper regulation of cell cycle is so key to life that the genes for these regulatory proteins have been highly conserved through evolution
 - the genes are basically the same in yeast, insects, plants & animals (including humans)

The Cell Cycle

- G1
- S
- G2
- M

Cell with chromosomes in the nucleus

Cell division

Mitosis

Chromosome separation

DNA synthesis

Chromosome duplication

Cell with duplicated chromosomes
External signals

- Growth factors
 - external signals
 - protein signals released by body cells that stimulate other cells to divide
 - density-dependent inhibition
 - crowded cells stop dividing
 - mass of cells use up growth factors
 - not enough left to trigger cell division
 - anchorage dependence
 - to divide cells must be attached to a substrate
Growth factor signals

Growth factor

Cell surface receptor

Protein kinase cascade

Nuclear membrane

Nuclear pore

Cytoplasm

Cell division

Cdk

Chromosome

E2F

Rb

Nucleus
Example of a Growth Factor

- Platelet Derived Growth Factor (PDGF)
 - made by platelets (blood cells)
 - binding of PDGF to cell receptors stimulates fibroblast (connective tissue) cell division
 - wound repair

growth of fibroblast cells (connective tissue cells) helps heal wounds
Growth Factors and Cancer

- Growth factors influence cell cycle
 - proto-oncogenes
 - normal genes that become oncogenes (cancer-causing) when mutated
 - stimulates cell growth
 - if switched **on** can cause cancer
 - example: RAS (activates cyclins)
 - tumor-suppressor genes
 - inhibits cell division
 - if switched **off** can cause cancer
 - example: p53
Cancer & Cell Growth

- Cancer is essentially a failure of cell division control
 - unrestrained, uncontrolled cell growth

- What control is lost?
 - checkpoint stops
 - gene **p53** plays a key role in G₁ checkpoint
 - p53 protein halts cell division if it detects damaged DNA
 - stimulates repair enzymes to fix DNA
 - forces cell into G₀ resting stage
 - keeps cell in G₁ arrest
 - causes apoptosis of damaged cell
 - **ALL** cancers have to shut down p53 activity

p53 discovered at Stony Brook by Dr. Arnold Levine
DNA damage is caused by heat, radiation, or chemicals.

Step 1
DNA damage is caused by heat, radiation, or chemicals.

Step 2
Cell division stops, and p53 triggers enzymes to repair damaged region.

Step 3
p53 triggers the destruction of cells damaged beyond repair.

NORMAL p53
- p53 allows cells with repaired DNA to divide.

ABNORMAL p53
- Abnormal p53 protein

Step 1
DNA damage is caused by heat, radiation, or chemicals.

Step 2
The p53 protein fails to stop cell division and repair DNA. Cell divides without repair to damaged DNA.

Step 3
Damaged cells continue to divide. If other damage accumulates, the cell can turn cancerous.

Cancer cell
Development of Cancer

- Cancer develops only after a cell experiences ~6 key mutations (“hits”)
 - unlimited growth
 - turn on growth promoter genes
 - ignore checkpoints
 - turn off tumor suppressor genes
 - escape apoptosis
 - turn off suicide genes
 - immortality = unlimited divisions
 - turn on chromosome maintenance genes
 - promotes blood vessel growth
 - turn on blood vessel growth genes
 - overcome anchor & density dependence
 - turn off touch censor gene

It’s like an out of control car!
What causes these “hits”?

- Mutations in cells can be triggered by
 - UV radiation
 - chemical exposure
 - radiation exposure
 - heat
 - cigarette smoke
 - pollution
 - age
 - genetics

1. A tumor grows from a single cancer cell.
2. Cancer cells invade neighboring tissue.
3. Cancer cells spread through lymph and blood vessels to other parts of the body.
Tumors

- **Mass of abnormal cells**
 - **Benign tumor**
 - abnormal cells remain at original site as a lump
 - p53 has halted cell divisions
 - most do not cause serious problems & can be removed by surgery
 - **Malignant tumors**
 - cells leave original site
 - lose attachment to nearby cells
 - carried by blood & lymph system to other tissues
 - start more tumors = **metastasis**
 - impair functions of organs throughout body
Traditional treatments for cancers

- Treatments target rapidly dividing cells
 - high-energy radiation & chemotherapy with toxic drugs
 - kill rapidly dividing cells
New “miracle drugs”

- Drugs targeting proteins (enzymes) found only in tumor cells
 - Gleevec
 - treatment for adult leukemia (CML) & stomach cancer (GIST)
 - 1st successful targeted drug

Gleevec: HOW IT WORKS
Any Questions??